
INSECTICIDE RESISTANCE AND RESISTANCE MANAGEMENT

Assessing Risk of Resistance to Aerial Applications of Methyl-Parathion
in Western Corn Rootworm (Coleoptera: Chrysomelidae)

MICHAEL A. CAPRIO,1 TIM NOWATZKI,2 BLAIR SIEGFRIED,2 LANCE J. MEINKE,2

ROBERT J. WRIGHT,2 AND LARRY D. CHANDLER3

J. Econ. Entomol. 99(2): 483Ð493 (2006)

ABSTRACT We validated a stochastic model of the evolution of resistance to adulticidal sprays of
methyl-parathion in western corn rootworm, Diabrotica virgifera virgifera LeConte, populations in
Nebraska. The population dynamics predicted by the model resembled that reported for Þeld
populations, and time until control failures occurred closely matched reports by commercial crop
consultants. We incorporated uncertainty about the values used for 18 model parameters by replacing
default values with random draws taken from a normal distribution. One parameter, the initial
resistance allele frequency, was no longer measurable because of the evolution of resistance. We
therefore proposed Þve candidate initial allele frequencies and developed probability distributions for
the time to resistance for each by running 1000 simulations with parameters randomly varied. These
distributions included variation because of stochastic effects as well as parameter uncertainty. We used
Bayesian inference to estimate the candidate frequency most likely, given reported times to Þeld
control failures. The initial allele frequency of 10�4 was most likely (29%), 10�3 was less likely (28%),
whereas 10�6 was relatively unlikely (5%). Results from sensitivity analysis depended upon how
evolution of resistance was measured. When resistance was examined as a genetic phenomenon, the
rate of increase of the resistance allele depended almost entirely on genetic factors (LC50 values), the
characteristics of the pesticide (residual activity), and the variance associated with emergence of
adults. When resistance was measured as failure of methyl-parathion to reduce populations below
threshold levels (0.5 gravid females per plant), parameters that contributed to population growth rate
(mortality and fecundity) were also important. These data suggest two important phases in resistance
evolution in corn rootworms: a genetic phase associated with negative growth rates and rapid changes
in resistance allele frequencies and a rebound phase associated with positive growth rates and near
Þxation of the resistance allele.
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Western corn rootworm,Diabrotica virgifera virgifera
LeConte, is a perennial insect pest of corn, Zea mays
L., across the Corn Belt. Economic loss from this pest
is most severe when corn is grown in the same Þeld for
successive years (continuous corn). Western corn
rootworm is univoltine and overwinters as eggs, typ-
ically in the soil of a cornÞeld. Egg hatch begins in late
May or early June, and the larvae complete three
stages feeding on the roots of corn. Larval feeding on
the roots can signiÞcantly reduce grain yield by lim-
iting water and nutrient uptake and by weakening the
plant, increasing its susceptibility to lodging (Levine
and Oloumi-Sadeghi 1991). Adult emergence typically
begins in late June or early July, and beetles can be
present in the cornÞeld until the Þrst killing frost in
fall.

The primary management tactics used against corn
rootworms have been crop rotation with a nonhost
crop, prophylactic treatment with soil insecticides ap-
plied at planting, or application of foliar insecticides
targeted to the adults to reduce oviposition and pre-
vent signiÞcant root injury in the Þeld the following
season (Levine and Oloumi-Sadeghi 1991). However,
in certain regions of the Corn Belt, the sustainability
of these control tactics has been challenged by the
western corn rootwormÕs ability to adapt to and over-
come management strategies that impose intense se-
lection pressure.

Crop rotation has traditionally been a very effective
management tool for western corn rootworms. Since
the early 1990s, however, damage to Þrst-year corn
following soybean in east central Illinois and north-
western Indiana has become severe (Levine and
Oloumi-Sadeghi 1996). Recent studies have led re-
searchers to suspect that long-term use of cornÐsoy-
bean crop rotation in this region has selected for a new
strain of western corn rootworm that oviposit in crops
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other than corn, thus allowing populations to circum-
vent crop rotation as a management tactic (Sammons
et al. 1997, OÕNeal et al. 1999, Isard et al. 2000).

The occurrence of insecticide resistance in Ne-
braska represents another example of how western
corn rootworms have adapted to a management tactic.
Between 1952 and 1954, the cyclodienes, such as al-
drin, chlordane, and heptachlor, were introduced as
soil insecticides for larval control (Metcalf 1986). The
insecticides were rapidly adopted by growers in Ne-
braska, with nearly 700,000 ha treated with these three
compounds in 1954 (Ball and Weekman 1962). Inef-
fective larval control with the cyclodienes was Þrst
observed in south central Nebraska in 1959, and 100-
fold resistance was documented by 1961, �10 yr after
introduction (Ball and Weekman 1962).

Organophosphate and carbamate insecticides were
introduced soon after the failure of the cyclodienes.
Growers in south central Nebraska began using these
compounds in aerial control programs to suppress
beetle populations and to prevent egg laying, thereby
managing larval injury the following season (Meinke
1995). The primary insecticide used in the initial bee-
tle control programs was carbaryl, formulated as Sevin
4-Oil by Union Carbide (Mayo 1976) followed in later
years with Sevin XLR. In 1980, Penncap-M (microen-
capsulated methyl-parathion; Elf Atochem North
America, Inc., Philadelphia, PA) was approved for use
in Þeld corn (Stoner et al. 1982). Growers in this
region slowly adopted Penncap-M, and by the early
1990s, it had replaced carbaryl as the primary insec-
ticide for beetle control because of its extended re-
sidual activity. However, reports of beetle control fail-
ures with Penncap-M began to increase in south
central Nebraska during the early 1990s (Wright et al.
1996), and resistance to methyl-parathion was docu-
mented in the region by 1995 (Meinke et al. 1998).

The distribution of organophosphate resistance
among Nebraska western corn rootworm populations
has changed signiÞcantly since its Þrst documentation
in 1995 (Meinke et al. 1998). Areas initially shown to
be susceptible have since become resistant, and as
resistance expands there are areas of vastly different
susceptibilities separated by relatively small geo-

graphical distances. The objectives of this study were
to develop and validate a stochastic simulation model
that predicts the evolution of organophosphate resis-
tance in western corn rootworm populations of Ne-
braska. The validated model could then be used to
help assess resistance risk for management strategies
designed to sustain novel rootworm control tactics
that may be implemented in the future.

Materials and Methods

A stochastic, individual-based, multiÞeld model
based on published corn rootworm life table data was
used to simulate the evolution of resistance to methyl-
parathion in western corn rootworms. The model sim-
ulated random draws from binomial probability dis-
tributions for dispersal, survivorship, mating, and
fecundity (in that order) daily. Because of the sto-
chastic nature of the model, all simulations were rep-
licated Þve times.
Life Table Traits.We assumed that corn rootworms

were physiologically active for �140 d/yr from egg
hatch to Þrst killing frost. We simulated those 140 d
daily. The life table parameters used in the model are
summarized in Table 1. Yearly overwintering survi-
vorship was randomly drawn from a normal distribu-
tion with a mean of 0.5 and a variance of 0.25 with
limits of 0.05 and 1.0.

Eclosion from eggs occurred over a mean of 29 d for
males and 32 d for females (Musick and Fairchild 1971,
Branson 1976, Palmer et al. 1977, Krysan et al. 1984,
Levine et al. 1992). Adult emergence was simulated
with a normal distribution with a mean of 45 d and a
standard deviation of 9.5 d for the females and 7 d for
the males (Nowatzki 2001). Female emergence was
delayed for 3 d relative to male emergence.
Pesticide Response. An objective of the model was

to simulate the evolution of resistance to the methyl-
parathion (Penncap-M) aerial adulticidal corn root-
worm control program, so we used data on the re-
sponse of western corn rootworm to this insecticide.
We assumed that resistance was expressed as a dom-
inant monogenic trait (Parimi et al. 2003); therefore,
heterozygous and homozygous resistant individuals

Table 1. Default western corn rootworm life table parameters used in the models

Stage Duration (d) Mortality/d Eggs/female/d Dispersal/d

Neonate 2 0.29a 0 0
Larva 21b 0.0914c 0 0
Pupa 10b 0.028d 0 0
Preovipositional adult 13e 0.0 0 0.0113f (15% for stage)
Young adult 28e,g,h 0.01h,i 29h 0.002 (5.6% for stage)
Old adult 9 0.0245h,i 7.5h 0.002 (1.8% for stage)

a Strnad and Bergman (1987); Branson (1989).
b Jackson and Elliott (1988)
c Elliott et al. (1989); Elliott and Hein (1991).
d Fisher (1986).
e Branson and Johnson (1973); Hill (1975).
fCoats et al. (1986); Naranjo (1990).
gQuiring and Timmins (1990); Branson et al. (1977); Ball (1957).
h Elliott et al. (1990).
i Elliott et al. (1991).
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were equally likely to survive exposure to methyl-
parathion. A single application of methyl-parathion
would kill 98.5% of susceptible individuals in the Þeld
(see consultants survey below), whereas 50% of re-
sistant individuals with homozygous or heterozygous
genotypes also were killed. We assumed no Þtness
costs were associated with resistance alleles nor did
dispersal behavior of resistant individuals differ from
that of susceptible individuals. EfÞcacy from a single
spray decayed with a half-life of 10 d, and a total period
of residual activity equivalent to 20 d (Mayo and
Newtton 1984). Resistance was determined by the
failure of the spray program to reduce beetle popu-
lations in the Þeld below a maximum acceptable den-
sity of 0.5 gravid females per plant (measured after
daily mortality and dispersal between Þelds had oc-
curred). Sprays were automatically applied, so this
density is not a spray threshold, but a threshold to
determine when growers were no longer obtaining
satisfactory control with methyl-parathion applica-
tions. The average plant population per Þeld was as-
sumed at 30,000 plants per acre. A matrix of 25 Þelds,
all treated uniformly, was used for these simulations.
Consultant Survey. To document the evolution of

methyl-parathion resistance as it was observed in the
Þeld, individual interviews with 10 Nebraska crop con-
sultants were conducted during November 2001ÐJan-
uary 2002. The consultants selected were members of
the Nebraska Independent Crop Consultants Associ-
ation and worked in Phelps County, Nebraska, or one
of its bordering counties during the period methyl-
parathion was used in Nebraska for adult corn root-
worm management and when resistance Þrst became
apparent. Interviews followed a standard written
questionnaire that was provided to crop consultants
before the interview. The questions were designed to
obtain information about when methyl-parathion use
for adult rootworm management began in south cen-
tral Nebraska and how its efÞcacy changed over time,
and to obtain realistic estimates for the major opera-
tional parameters involved in the development of re-
sistance.
Model Corroboration. The population dynamics

properties of the model were qualitatively corrobo-
rated by comparing the simulated population dynam-
ics with one of several sets of empirical population
dynamics data published by Short and Hill (1972).
Because published population dynamics data on larval
development were limited, we focused on comparing
female emergence, preovipositional female numbers,
and gravid female numbers between empirical data
reported for Þeld populations in Nebraska and the
simulated Þelds. The population genetics component
of the model was veriÞed by comparing the predicted
time to resistance with the time-period reported by
grower consultants for resistance to develop in the
Þeld.
Initial Resistance Allele Frequency. Because we

were modeling a retrospective case of resistance evo-
lution, it was possible to estimate parameters associ-
ated with the genetics of resistance (LC50, slope of the
dose-mortality curve, and dominance of resistance).

We could not, however, estimate the initial resistance
allele frequency from the available data. We chose, a
priori, Þve values (10�2, 10�3, 10�4, 10�5, and 10�6) as
candidate initial allele frequencies to cover a likely
range of estimates. For each candidate value, we ran
1000 simulations, randomly varying each of 18 biolog-
ical parameters for each simulation (Table 2). Each
parameter was varied by making a random draw from
a normal distribution with the mean equal to our
default parameter and a standard deviation equal to
10% of the parameter value. Thus, �95% of the values
used in the simulations were in the range of 80Ð120%
of the default value. We limited the resulting distri-
butions to those simulations that did not result in
extinction and where control failures took longer than
3 yr to evolve (these were examples where the random
parameters chosen resulted in the pesticide never
working and really are cases of tolerance rather than
resistance). We then calculated from the resulting
distributions the likelihood that a candidate initial
allele frequency existed given that resistance evolved
in a speciÞed time frame by using Bayesian inference
(Carpenter 1990, Haefner 1996). In the absence of
previous information, we assumed that the prior prob-
abilities for the three candidate frequencies were all
0.2. Weighting these likelihoods with the reported
appearance of resistance by Meinke et al. (1997) al-
lowed us to estimate which candidate initial resistance
allele frequency was most likely to result in the model
simulating a time frame similar to that observed in the
Þeld.

Table 2. Parameters varied in the initial resistance allele fre-
quency and sensitivity analyses

Parameter

Mortality rate
Neonate
Larva
Pupa
Young adult
Old adult

Dispersal rate
Preovipositional adult
Young adult
Old adult

Fecundity
Young adult
Old adult

Overwintering emergence variance
Male
Female

Density dependence
Maximum pop

Genetics of resistance
SS LC50

RS LC50

RR LC50

Slope of the doseÐmortality curves
Decay rate of insecticide

At the start of each simulation, each parameter was randomly drawn
from a normal distribution with a mean of the default value of the
parameter and a standard deviation equal to 10% of the mean. All rates
were limited to biologically feasible values. For example, mortality
and dispersal rates were limited to between 0 and 1. The LC50 of the
RSgenotypewas limited tovaluesbetween theSSandRRLC50 values.
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Sensitivity Analysis. To determine the modelÕs sen-
sitivity to variations in the biological parameters, we
varied the same 18 parameters in the same manner as
in the initial frequency experiment (Table 2), running
2,000 simulations with an initial resistance allele fre-
quency of 1 � 10Ð5. In this example, however, we saved
the parameter values, the time it took for control
failures to occur in the simulated Þelds as well as the
rate of increase in the resistance allele frequency after
3 yr. The time to control failure incorporates both the
time it took for resistance to evolve, as well as some
time for the population to rebuild to threshold levels.
The latter measure is a relative estimate of the rate at
which resistance evolved in that simulation. The rate
of change of the frequency of a rare resistance allele
is approximately constant and related to the relative
Þtness of the heterozygotes compared with suscepti-
ble homozygotes. The rate of change measurement is
therefore a relative measure of the rate at which re-
sistance evolved in a simulation without regard to a
population rebounding in the Þeld. The degree to
which these twoestimatesarecorrelated is anestimate
of the importance of resistance genetics and popula-
tion dynamics in Þeld control failures for the western
corn rootworm.

To determine model sensitivity to variation in pa-
rameters, we conducted a multiple, stepwise regres-
sion for each of the two resistance measurements. To
stabilize variances for the rate measurement, we Þrst
log transformed the rate variable. We performed both
forward and backward stepwise regression, in all cases
with P � 0.005, to determine whether a coefÞcient
should either be included or removed from the re-
gression. We examined residuals from each regression
for outliers and veriÞed that they approximated a
normal distribution. A limitation of this sensitivity
analysis is that all parameters were drawn indepen-
dently, assuming that there was no covariance be-
tween parameters. Although a limitation of the Þeld
data available, it is possible that there could be eco-
logical trade-offs between these parameters leading to
covariance structures.
Spray Timing.To determine how sensitive the time

until control failures occurred was to variations in the
timing of the single adulticide spray of methyl-para-
thion, we simulated three spray dates, each 10 d apart.
The early spray date (day 52) was synchronized with
the Þrst appearance of gravid females, the median
spray date (day 62) occurred when �10% of the fe-
males were gravid, and the later spray date (day 72)
occurred when �50% of the females were gravid.
Multiple SprayApplications.During the latter years

of beetle management with methyl-parathion in Ne-
braska, many Þelds required more than one applica-
tion during the growing season to maintain beetle
populations below threshold levels (Meinke et al.
1997). To determine whether the use of multiple
sprays signiÞcantly impacted the longevity of the bee-
tle control program, we simulated a second spray ap-
plied 14 d after the Þrst. The use of a second spray was
incorporated into the simulation model beginning in

the sixth year. We then compared the mean time to
control failure with and without this second spray.

Results and Discussion

Consultant Survey. The consultants that were in-
terviewed inßuenced rootworm management deci-
sions on a total of 86,600 ha of cropland annually in
Phelps County or one of its bordering counties, and
they had been consulting in the region for an average
of 18 � 5.9 yr. During the initial period of methyl-
parathion use, all consultants reported that one spray
applicationprovidedveryhigh levelsofbeetlecontrol,
initially reducing populations by an average of 97 �
2.7% with 7Ð14 d of residual activity. All consultants
stated this level of control sufÞciently maintained bee-
tle populations below threshold levels for the remain-
der of the growing season.

All 10 consultants interviewed reported a reduction
in beetle control with methyl-parathion (not ex-
plained by weather conditions or product application
problems) after methyl-parathion use began in their
area (Table 3). A reduction in beetle control was Þrst
observed an average of 5.4 � 1.8 yr after methyl-
parathion was initially used (Table 3). The consultants
deÞned reduced control as a reduction in residual
activity and responded by recommending a two-spray
program by using increased application rates to main-
tain beetle populations below threshold levels.

EfÞcacy continued to decline over time, and all 10
consultants reported experiencing beetle control fail-
ures at some time with methyl-parathion, averaging
7.6 � 1.85 yr after it was initially used (Table 1). A
control failure was deÞned as greatly reduced initial
knockdown of the population, and the inability of two
or three applications to reduce beetle populations
below threshold levels. In response to control failures,
consultants initially recommended a variety of control
options, including the application of other active in-
gredients (dimethoate, bifenthrin, or cyhalothrin) ei-
ther alone or tank-mixed with methyl-parathion, or
the use of a soil insecticide for larval control during the

Table 3. Time line of methyl-parathion (Penncap-M) perfor-
mance as observed by crop consultants in the Phelps County,
Nebraska, region

Consultant
First yr
of use

Yr until
reduced
control

Yr until
control
failure

Yr until
abandoned

1 1990 4 5 8
2 1985 5 10 10
3 Ña Ñ Ñ Ñ
4 1983 5 9 15
5 1990 4 5 8
6 1991 3 8 9
7 1989 8 9 9
8 Ñ Ñ Ñ Ñ
9 1986 7 8 10

10 1989 7 7 Ñ
Mean�SD 5.4 � 1.77 7.6 � 1.85 9.9 � 2.41

a Response not included because consultant either started consult-
ing in the region after Penncap-M was already in use by their growers,
or they left the area before it was abandoned.
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following season. Because of poor efÞcacy and in-
creasing control costs, methyl-parathion was aban-
doned as a beetle management tool by the consultants
an average of 9.9 � 2.41 yr after it was initially used
(Table 3).
Model Corroboration. The population dynamics of

the model closely resembled those measured in the
Þeld (Short and Hill 1972) (Fig. 1). As with all models,
the simulated results are an approximation and not an
exact duplicate of observations collected in the Þeld.
Although it is difÞcult to determine whether the Þt
between observed and simulated results are satisfac-
tory, we trust the model contains sufÞcient detail to
adequately describe the population dynamics of corn
rootworms and to meet the objectives proposed for
the model. The default parameters we incorporated
into the model suggested that resistance could have
evolved within 8.5 yr (Table 4; Fig. 2), well within the
time frame reported by crop consultants in the region
where resistance occurred.
Initial Resistance Allele Frequency. Resistance

evolved an average of 4.3 yr earlier when the initial
resistance allele frequency was 10�4 than when the
frequency was 10�6 (Fig. 2; F � 37.1; df � 2, 27; P �

0.001). All parameters in these simulations, with the
exception of initial resistance allele frequency, re-
mained constant, so the variability observed was only
because of stochastic factors.

The modes of the distribution of the time to control
failure in the Þeld from 1000 simulations were not
different from the mean values determined from using
only the default parameter values (Fig. 3). Each de-
crease of an order of magnitude in the initial resistance
allele frequency increased the time until resistance
evolved by �2 yr. This relationship is consistent with
a linear rate of increase in the time to resistance with
the log of resistant allele frequency. With an initial
resistance allele frequency of 10�4, these simulations
suggest one would have to lower the initial resistance
allele frequency by 4 orders of magnitude to double
the time it took for resistance to evolve.

The results of the Bayesian inference analysis
(Table 4) suggest that a model using an initial resis-
tance allele frequency of 1 �10�4 would be most likely
to result in the observed results (of the Þve models
tested). The probability of this model explaining the
observed results, given the observed simulation dis-
tributions and the error analysis (random variation of

Fig. 1. Comparison of Þeld population dynamics with simulated population dynamics. (A) Summary of Þeld data reported
by Short and Hill (1972) for North Platte, NE. (B) Simulated population dynamics for an untreated Þeld. (C) Simulated
population dynamics for a Þeld treated once per year.
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parameters), was 29%, followed closely by 10�3 (28%)
and 10�2 (22%). The probability of the model incor-
porating an initial resistance allele frequency of
1 �10�5 was 16%, whereas the probability of the last
model (1 � 10�6) was �5%, suggesting that this initial
resistance allele frequency was unlikely.
Sensitivity Analysis.We performed multiple linear

regression forall 18parameters thatwerevariedon the
two measures of resistance: the time to control failure
in the Þeld and the rate of increase in the resistance
allele frequency after 3 yr of simulating a single spray
per year (Tables 5 and 6). Similar genetic parameters
were incorporated into both models with the excep-
tion that the response of the homozygous susceptible
genotype (SS LC50), which was considered to be a
marginal variable in the Þeld failure regression. Both
regressions also incorporated the variance in male and
female emergence curves. These parameters are prob-
ably important because they determine the number of

insects that are exposed to a single application. As the
variance in the emergence pattern changed, the pro-
portion of the population that had still not emerged
when the toxin was applied to Þelds also changed.
Dispersal parameters were not signiÞcant in either
regression, probably because we simulated a small,
uniform set of Þelds that were all treated identically.
The simulated environment was typical, however, of
the region in Nebraska where resistance to methyl-
parathion did evolve. Future simulations will address
multiple habitat environments. The two regressions
differed considerably in their incorporation of param-
eters that affect the rate of increase in the population
(mortality and fecundity rates). These parameters
were highly signiÞcant in the Þeld failure regression,
and the terms with the highest standardized coefÞ-
cientswereamong this classofparameters. Incontrast,
these terms were not signiÞcant in the rate of increase
regression, suggesting that growth rate parameters did
not have a large direct impact on the evolution of
resistance. These results suggest that the loss of
methyl-parathion efÞcacy in Nebraska was the result
of a two-step process. Initially, population growth
rates were negative and the population size decreased.
During this period, selection rapidly increased the
resistant allele frequency. Once the resistance allele
reached a high enough frequency, the population
growth rate again became positive and the popu-
lation began to rebound. The speed at which the
population rebounded to damaging levels during this
second phase was directly related to the population
growth rate. The importance of this second phase in
the occurrence of beetle control failures in the Þeld is
indicated by the low PearsonÕs correlation coefÞcient
(�0.194) between the natural log of the rate of resis-
tance and the observed time to Þeld failures.

Table 4. Bayesian inference of the likelihood of the five candidate initial resistance allele frequencies [�(P(IRFj�Year)* GD)] given
the observed distribution of the time until beetle control failures occurred in the field as reported by commercial crop consultants (GD)
and the distributions of simulated model results by using randomly varied parameter inputs [P(Year�IRFj)]

P(Year�IRFj) P(IRFj�Year) Consultant
distribution

(GD)10��2 10��3 10��4 10��5 10��6 10��2 10��3 10��4 10��5 10��6

4 0.325 0.015 0.010 0.010 0.009 0.879 0.042 0.027 0.0281 0.024 0
5 0.357 0.129 0.010 0.006 0.003 0.708 0.256 0.020 0.011 0.005 0.25
6 0.182 0.265 0.046 0.005 0.001 0.366 0.531 0.092 0.009 0.003 0
7 0.076 0.242 0.124 0.024 0.005 0.161 0.513 0.263 0.051 0.011 0.125
8 0.034 0.168 0.221 0.068 0.005 0.068 0.338 0.446 0.137 0.010 0.25
9 0.014 0.102 0.179 0.119 0.040 0.30 0.225 0.395 0.262 0.088 0.25

10 0.007 0.040 0.139 0.155 0.065 0.017 0.099 0.342 0.381 0.161 0.125
11 0.003 0.025 0.084 0.147 0.123 0.010 0.065 0.220 0.384 0.322 0
12 0.001 0.007 0.057 0.124 0.152 0.003 0.021 0.167 0.362 0.446 0
13 0.0 0.005 0.037 0.088 0.133 0.0 0.020 0.140 0.334 0.506 0
14 0.0 0.001 0.037 0.080 0.117 0.0 0.004 0.158 0.340 0.498 0
15 0.0 0.0 0.011 0.059 0.088 0.0 0.0 0.070 0.372 0.558 0
16 0.0 0.0 0.010 0.035 0.077 0.0 0.0 0.083 0.285 0.632 0
17 0.0 0.0 0.010 0.024 0.045 0.0 0.0 0.127 0.306 0.566 0
18 0.0 0.0 0.004 0.021 0.033 0.0 0.0 0.076 0.355 0.569 0
19 0.0 0.0 0.004 0.010 0.035 0.0 0.0 0.090 0.210 0.699 0
20 0.0 0.0 0.004 0.014 0.019 0.0 0.0 0.119 0.369 0.512 0

�(P(IRFj�Year) * GD) 0.224 0.281 0.291 0.157 0.047

We assume no knowledge about the prior distributions of the initial gene frequencies �P(IRFj)	 and set all Þve equal to 0.20. The table has
been truncated at 20 yr, although all calculations were conducted on the full (29-yr) table.

Fig. 2. Mean�SDtimeuntil Þeld failure(
15,000gravid
females per acre) of simulations run with default parameters
but with different initial resistance allele frequencies, 140 d
occur per year.
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Spray Timing. The mean time to control failure
was different for each of the three application dates
(Fig. 4; F � 105.1; df � 2, 12; P � 0.001). When the
application was made early in the emergence curve,
control failures occurred �20% faster than the median
spray date. The sprays were in this case marginally
effective (Fig. 5A), and although the resistant allele

was not as common, the population exceeded our
predetermined control failure guidelines (15,000 fe-
males per acre) early. These simulations demonstrate
the difference between genetic resistance and a per-
formance-based measure of resistance. When sprays
were applied late (Fig. 5C), the spray program did not
control the ovipositing female beetles and control
failures occurred in the second year of the program.

These simulations suggest that there was a relatively
small window of perhaps 10 d over which the single
methyl-parathion spray could be applied and still
maintain adequate control of the populations. The
median spray date not only resulted in the highest
level of population suppression and most rapid evo-
lution of resistance but also provided the longest time
until control failures with the adulticide program.
Multiple Spray Dates. The second spray had no

discernible impact on the rate of resistance evolution
(t� �0.84, df � 8,P� 0.43). The population dynamics
of the two-spray regime closely resemble those of the
single spray regime (Fig. 6). We suggest the second
spray had little impact on the rate of resistance evo-
lution because the population was essentially genet-
ically resistant after just 5 yr, and most of the subse-
quent 5 yr were an interaction of limited impact from
the spray and the time required for the population to
rebound from the low sizes resulting from the early
years of the adulticide program. Because heritable
variation for a dominant trait actually decreases as the
allele becomes common, relatively little change in the
resistance allele frequency occurred over the second
5 yr (in direct contrast to a recessive trait). The im-
plication of these results is that any resistance man-
agement program for methyl-parathion should have
been implemented within the Þrst 5 yr of the adulti-
cide program. Attempts to implement resistance man-
agement in the Þnal 5 yr would have had low proba-
bility of success.
Conclusions. We have developed a model retro-

spectively describing the evolution of resistance to
adulticidal sprays of methyl-parathion among popu-
lations of western corn rootworm. The population
dynamics observed in the model resembles that re-
ported for Þeld populations. There also was close con-
cordance between the estimated time until Þeld fail-
ures because of the inability of methyl-parathion to
maintain populations below critical densities and the
times observed by commercial crop consultants in the
region where resistance developed. As with any bio-
logical system, there was considerable uncertainty
with regard to various biological parameters, either
because a reliable estimate for the parameter was not
reported in the literature or because of the inherent
difÞculty associated with estimating certain parame-
ters to which accurate Þeld data are lacking. We at-
tempted to incorporate this uncertainty by randomly
varying parameters and by running the model many
times. Our goal was not to obtain single estimates from
the model, but rather to develop probability distribu-
tions of likely outputs given parameter uncertainty.
Because of the stochastic nature of the model, and
because of the inevitability of parameter uncertainty,

Fig. 3. Distributions of the time to Þeld failure for 1000
simulations with parameters randomly drawn from normal
distributions with a mean of the default parameter value and
a standard deviation of 10% of the mean. The initial resistance
allele frequencies were held constant at 0.01, 0.001, 0.0001,
0.00001, and 0.000001 for each set of simulations.
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we feel that these distributions are a better description
of model output than are single value outputs.

The results presented here suggest that the initial
resistance allele frequency was most likely 
1 � 10�6

when the adulticide program by using methyl-para-
thion was initiated. Although it is certainly possible to
design parameter sets that would support any of the
Þve candidate initial resistance allele frequencies, we
limited this problem by randomly varying all param-
eters in the model. The parameter distribution esti-
mates [the P(Year IRFj) columns in Table 4] there-
fore incorporate parameter uncertainty in those

distributions. We would not suggest that simulations
are an ideal method to estimate initial allele frequen-
cies. However, given that the opportunity to actually
measure the frequencies has been lost, simulations
represent the best tools to gather and organize current
data and rank hypotheses about initial gene frequen-
cies. Bayesian inference is an ideal tool in this case
because it allows us to estimate the likelihood of dif-
ferent hypotheses given the observed data, whereas
frequentist statistics are focused on the likelihood of
the observed events given that a speciÞc hypothesis is
true. It is, however, important to understand that the

Table 5. Results from a stepwise linear regression of 18 randomly varied parameters on the simulated time until beetle control failures
were observed in fields

Parameter CoefÞcient
Standardized
coefÞcient

F P

Terms included in regression
Neonate mortality 4630.2 0.233 261.6 �0.0001
Larval mortality 40166.0 0.631 1911 �0.0001
Pupal mortality 17184 0.087 36.3 �0.0001
Young adult mortality 18926 0.084 33.6 �0.0001
Young adult fecundity �49.02 �0.252 307.1 �0.0001
Male emergence 77.4 0.104 51.9 �0.0001
Female emergence �107.11 �0.170 139.4 �0.0001
RS LC50 �222.87 �0.200 192.3 �0.0001
Slope of doseÐmortality curve 80.79 0.046 9.98 0.0016
Residual activity of spray 30.61 0.057 15.7 0.0001

Terms removed from regression
Old adult mortality 0.142 0.706
Preovipositional adult dispersal 0.115 0.734
Young adult dispersal 0.373 0.541
Old adult dispersal 0.140 0.708

Old adult fecundity 0.432 0.511
SS LC50 7.75 0.005
RR LC50 0.456 0.500
Max pop size 0.314 0.575

The standardized coefÞcient is the amount of change, in standard deviation units, in the dependent variable when an independent variable
changes by one standard deviation unit.

Table 6. Results from a stepwise linear regression of 18 randomly varied parameters on the simulated rate of resistance evolution
measured as the natural logarithm of the ratio of the resistance allele frequency after 3 yr relative to the initial resistance allele frequency

Parameter CoefÞcient
Standardized
coefÞcient

F P

Terms included in regression
Male emergence �0.372 �0.276 639.2 �0.00001
Female emergence �0.446 �0.392 1291 �0.00001
SS LC50 �5.433 �0.405 1376 �0.00001
RS LC50 0.696 0.345 998.3 �0.00001
Slope of the doseÐmortality curve 1.554 0.485 1968 �0.00001
Residual activity of spray 0.137 0.142 169.6 �0.00001

Terms removed from regression
Neonate mortality 3.193 0.074
Larval mortality 4.593 0.032
Pupal mortality 0.046 0.831
Young adult mortality 1.218 0.270
Old adult mortality 0.830 0.362
Preovipositional adult dispersal 0.053 0.818
Young adult dispersal 0.098 0.754
Old adult dispersal 0.633 0.426
Young adult fecundity 2.800 0.094
Old adult fecundity 0.844 0.358
RR LC50 4.751 0.029
Max pop size 1.251 0.264

The standardized coefÞcient is the amount of change, in standard deviation units, in the dependent variable when an independent variable
changes by one standard deviation unit.
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Bayesian approach only evaluates the candidate hy-
potheses. The Bayesian approach does not identify the
overall optimal model, only the candidate model that
most likely would result in the observed results. In
contrast, a conventional null hypothesis only deter-
mines the likelihood of observing the data given that
the single model being evaluated is true and hence also
does not determine the optimal model.
VariationandModelStability.Our methodology for

sensitivity analysis in this article differed signiÞcantly
from previous approaches. A common approach to
sensitivity analysis is to identify variables that are
thought to be important and to vary those parameters
over a range while maintaining all other parameters at
constant or default values. This method suffers from
several limitations. First, only the parameters identi-
Þed by the researchers as important are varied. Sec-

Fig. 4. Effect of spray timing on the time to Þeld control
failure of methyl-parathion; 140 d occur per year. The early
spray date was when gravid females Þrst occurred, the me-
dian spray date was when �10% of the females were gravid,
and the late spray was applied when �50% of the females
were gravid.

Fig. 5. Effect of spray timing on population dynamics and the development of control failures to methyl-parathion. The
early spray date was when gravid females Þrst occurred, the median spray date was when �10% of the females were gravid,
and the late spray was applied when �50% of the females were gravid.
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ond, the sensitivity of parameters is only examined
with the other parameters set to default values, and
interactions between parameters are not considered.
If a parameter is important only when a second pa-
rameter is at a nondefault value, the sensitivity of the
model to the Þrst parameter may not be identiÞed. For
example, Caprio and Tabashnik (1992) found that the
effects of gene ßow were dependent on the values
used for the initial resistance allele frequency. Our
method of sensitivity analysis differed because we
randomly varied all the parameters in the model and
used linear regression to identify the most important
parameters. This removes the bias of the researcher
choosing which parameters to vary for sensitivity anal-
ysis. We did not initially expect the model to demon-
strate much sensitivity with respect to growth rate
parameters and would probably not have included
those parameters in a traditional sensitivity analysis. It
is more difÞcult to establish the importance of testing
the potential for interactions between variables. An
alternative approach of varying parameters over spe-
ciÞc values and using analysis of variance (ANOVA)
would be more appropriate for identifying these re-
lationships, although the number of potential inter-
action terms would be daunting. We suggest Þrst iden-
tifying sensitive parameters that have important
impacts on model predictions using linear regression
and then using ANOVA to determine whether inter-
actions are important among this smaller subset of
parameters. Although this approach may still not iden-
tify all interactions, it would improve current tech-
niques that do not attempt to identify any interactions.
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